Modelos de pronósticos de la demanda turística: una revisión de los estudios actuales

Autores/as

  • Reinier Fernàndez Lòpez Universidad de Pinar del Río Hermanos Saiz Monte de Oca, UPR, Pinar del Río, Cuba.
  • José Alberto Vilalta-Alonso Universidad Tecnológica de La Habana José A. Echeverría, CUJAE, Facultad de Ingeniería Industrial, La Habana, Cuba.
  • Deisy Alonso Porraspita Universidad de Pinar del Río Hermanos Saiz Monte de Oca, UPR, Vicerrectoría de Investigación y Posgrado, Pinar del Río, Cuba.
  • Yankiel Blanco Zamora Jefe del Departamento de Matemática de la Facultad de Ingeniería y Ciencias Empresariales, Universidad de Artemisa, Cuba
  • Saray Núñez González Universidad de Pinar del Río Hermanos Saiz Monte de Oca, UPR, Vicerrectoría de Investigación y Posgrado, Pinar del Río, Cuba.

DOI:

https://doi.org/10.46661/rev.metodoscuant.econ.empresa.6191

Palabras clave:

pronóstico, demanda, turismo, revisión, bibliometrix

Resumen

El turismo ha cobrado vital importancia en los últimos tiempos al ser una de las actividades económicas que mayores beneficios aportan a un país, tanto en el ámbito social, económico como ambiental. Consecuentemente, los modelos de pronósticos de la demanda en el sector constituyen herramientas adecuadas que sirven de soporte en la toma de decisiones.  En este sentido, varios autores han realizado importantes aportes en el campo de la ciencia que ayudan a mejorar la gestión turística. Lo que conlleva a plantear como objetivo el análisis de las tendencias actuales de los modelos de previsión turística mediante la herramienta R bibliometrix, cubriendo 254 artículos de investigación publicados entre 2017 y 2021. Los principales resultados arrojan que los modelos para el pronóstico de la demanda turística se encuentran en una evolución constante y no existe un modelo único que funcione bien para todas las situaciones. También se puede apreciar que a causa de la pandemia de COVID-19, los modelos de pronóstico para ese año fueron inservibles; sin embargo, fue el año de más publicaciones. De igual modo, la presente investigación permitió identificar los principales países, revistas científicas y autores que abordan el estudio de la demanda turística.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aliyev, R., Salehi, S., & Aliyev, R. (2019). Development of fuzzy time series model for hotel occupancy forecasting. Sustainability (Switzerland), 11(3). 793. https://doi.org/10.3390/su11030793

Andreeski, C., & Mechkaroska, D. (2020). Modelling, forecasting and testing decisions for seasonal time series in tourism. Acta Polytechnica Hungarica, 17(10), 149-171. https://doi.org/10.12700/APH.17.10.2020.10.9

Antolini, F., & Grassini, L. (2019). Foreign arrivals nowcasting in Italy with Google Trends data. Quality and Quantity, 53(5), 2385-2401. https://doi.org/10.1007/s11135-018-0748-z

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Bamel, U., Pereira, V., Del Giudice, M., & Temouri, Y. (2020). The extent and impact of intellectual capital research: A two decade analysis. Journal of Intellectual Capital.23 (2). 375-400. https://doi.org/10.1108/JIC-05-2020-0142

Bayliss, C. (2021). Machine learning based simulation optimisation for urban routing problems. Applied Soft Computing, 105. 107269. https://doi.org/10.1016/j.asoc.2021.107269

Bi, J.-W., Li, H., & Fan, Z.-P. (2021). Tourism demand forecasting with time series imaging: A deep learning model. Annals of Tourism Research, 90. 103255. https://doi.org/10.1016/j.annals.2021.103255

Bokelmann, B., & Lessmann, S. (2019). Spurious patterns in Google Trends data—An analysis of the effects on tourism demand forecasting in Germany. Tourism Management, 75, 1-12. https://doi.org/10.1016/j.tourman.2019.04.015

Cahlik, T. (2000). Comparison of the maps of science. Scientometrics, 49(3), 373-387.

https://doi.org/10.1023/A:1010581421990

Callon, M., Courtial, J.-P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics, 22(1), 155-205. https://doi.org/10.1007/BF02019280

Camón Luis, E., & Celma, D. (2020). Circular Economy. A review and bibliometric analysis. Sustainability, 12(16), 6381. https://doi.org/10.3390/su12166381

Campra, M., Riva, P., Oricchio, G., & Brescia, V. (2021). Bibliometrix analysis of medical tourism. Health Services Management Research. 32(5). 172-188. https://doi.org/10.1177/09514848211011738

Chen, J. L., Li, G., Wu, D. C., & Shen, S. (2019). Forecasting Seasonal Tourism Demand Using a Multiseries Structural Time Series Method. Journal of Travel Research, 58(1), 92-103. https://doi.org/10.1177/0047287517737191

Chernbumroong, S., Nunti, C., & Somboon, K. (2020). Forecasting Chinese Tourism Demand for Thailand: Using Markov Switching Autoregressive Model. J. Phys. Conf. Ser., 1651(1). 012027. https://doi.org/10.1088/1742-6596/1651/1/012027

Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. Journal of informetrics, 5(1), 146-166. https://doi.org/10.1016/j.joi.2010.10.002

Crouch, G. I. (1994). The Study of International Tourism Demand: A Survey of Practice. Journal of Travel Research, 32(4), 41-55. https://doi.org/10.1177/004728759403200408

De Luca, G., & Rosciano, M. (2020). Quantile dependence in tourism demand time series: Evidence in the Southern Italy market. Sustainability (Switzerland), 12(8). 3243. https://doi.org/10.3390/SU12083243

Della Corte, V., Del Gaudio, G., Sepe, F., & Sciarelli, F. (2019). Sustainable tourism in the open innovation realm: A bibliometric analysis. Sustainability (Switzerland), 11(21). 6114. https://doi.org/10.3390/su11216114

Dergiades, T., Mavragani, E., & Pan, B. (2018). Google Trends and tourists’ arrivals: Emerging biases and proposed corrections. Tourism Management, 66, 108-120. https://doi.org/10.1016/j.tourman.2017.10.014

Dinis, G., Breda, Z., Costa, C., & Pacheco, O. (2019). Google Trends in tourism and hospitality research: A systematic literature review. Journal of Hospitality and Tourism Technology, 10(4), 747-763. https://doi.org/10.1108/JHTT-08-2018-0086

Emili, S., Gardini, A., & Foscolo, E. (2020). High spatial and temporal detail in timely prediction of tourism demand. International Journal of Tourism Research, 22(4), 451-463. https://doi.org/10.1002/jtr.2348

Feng, Y., Li, G., Sun, X., & Li, J. (2019). Forecasting the number of inbound tourists with Google Trends. Procedia Computer Science, 162, 628-633. https://doi.org/10.1016/j.procs.2019.12.032

Gallego, I., & Font, X. (2021). Changes in air passenger demand as a result of the COVID-19 crisis: Using Big Data to inform tourism policy. Journal of Sustainable Tourism, 29(9), 1470-1489. https://doi.org/10.1080/09669582.2020.1773476

García-Madurga, M.-Á., Esteban-Navarro, M.-Á., & Morte-Nadal, T. (2021). Covid key figures and new challenges in the horeca sector: The way towards a new supply-chain. Sustainability (Switzerland), 13(12). 6884. https://doi.org/10.3390/su13126884

Gunter, U., Önder, I., & Gindl, S. (2019). Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria. Tourism Economics, 25(3), 375-401. https://doi.org/10.1177/1354816618793765

Han, S., Guo, Y., Cao, H., Feng, Q., & Li, Y. (2017). A cross-view model for tourism demand forecasting with artificial intelligence method. En Song X., Xie W., Lu Z., Zou B., Li M., & Wang H., Commun. Comput. Info. Sci. (Vol. 727, p. 582). Springer Verlag. https://doi.org/10.1007/978-981-10-6385-5_48

Hassani, H., Silva, E. S., Antonakakis, N., Filis, G., & Gupta, R. (2017). Forecasting accuracy evaluation of tourist arrivals. Annals of Tourism Research, 63, 112-127. https://doi.org/10.1016/j.annals.2017.01.008

Helgemeir, T., & Cenzano, C. H. (2019). Artificial intelligence in tourism software solutions: Opportunities and challenges until 2024. En Jain K., Sangle S., Gupta R., Persis J., & R. M. (Eds.), Manag. Technol. Incl. Sustain. Growth—Int. Conf. Int. Assoc. Manag. Technol., IAMOT (pp. 134-142). Excel India Publishers. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081108614&partnerID=40&md5=bc3aca23d37cba8b3b7d5a7466ba41b9

Höpken, W., Eberle, T., Fuchs, M., & Lexhagen, M. (2019). Google Trends data for analysing tourists’ online search behaviour and improving demand forecasting: The case of Åre, Sweden. Information Technology and Tourism, 21(1), 45-62. https://doi.org/10.1007/s40558-018-0129-4

Höpken, W., Eberle, T., Fuchs, M., & Lexhagen, M. (2021). Improving Tourist Arrival Prediction: A Big Data and Artificial Neural Network Approach. Journal of Travel Research, 60(5), 998-1017. https://doi.org/10.1177/0047287520921244

Hu, M., Xiao, M., & Li, H. (2021). Which search queries are more powerful in tourism demand forecasting: Searches via mobile device or PC? International Journal of Contemporary Hospitality Management. 33 (6). 2022-2043. https://doi.org/10.1108/IJCHM-06-2020-0559

Hu, Y.-C., & Jiang, P. (2020). Fuzzified grey prediction models using neural networks for tourism demand forecasting. Computational and Applied Mathematics, 39(3). 145. https://doi.org/10.1007/s40314-020-01188-6

Hu, Y.-C., Jiang, P., & Lee, P.-C. (2019). Forecasting tourism demand by incorporating neural networks into Grey–Markov models. Journal of the Operational Research Society, 70(1), 12-20. https://doi.org/10.1080/01605682.2017.1418150

Huang, B., & Hao, H. (2021). A novel two-step procedure for tourism demand forecasting. Current Issues in Tourism, 24(9), 1199-1210. https://doi.org/10.1080/13683500.2020.1770705

Huarng, K.-H., & Yu, T. H.-K. (2019). Application of Google trends to forecast tourism demand. Journal of Internet Technology, 20(4), 1273-1280. https://doi.org/10.3966/160792642019072004025

Jaipuria, S., Parida, R., & Ray, P. (2021). The impact of COVID-19 on tourism sector in India. Tourism Recreation Research, 46(2), 245-260. https://doi.org/10.1080/02508281.2020.1846971

Jiang, P., Yang, H., Li, R., & Li, C. (2020). Inbound tourism demand forecasting framework based on fuzzy time series and advanced optimization algorithm. Applied Soft Computing, 92, 106320. https://doi.org/10.1016/j.asoc.2020.106320

Jiao, E. X., & Chen, J. L. (2019). Tourism forecasting: A review of methodological developments over the last decade. Tourism Economics, 25(3), 469-492. https://doi.org/10.1177/1354816618812588

Keliwar, S., Putra, A. B. W., Hammad, J., & Haviluddin. (2018). Modeling time series data for forecasting the number of foreign tourists in east Kalimantan using fuzzy inference system based on ARX model. International Journal of Engineering and Technology(UAE), 7(2), 104-107. https://doi.org/10.14419/ijet.v7i2.2.12745

Kumar, S., Pandey, N., Burton, B., & Sureka, R. (2021). Research patterns and intellectual structure of Managerial Auditing Journal: A retrospective using bibliometric analysis during 1986-2019. Managerial Auditing Journal, 36(2), 280-313. https://doi.org/10.1108/MAJ-12-2019-2517

Law, R., Li, G., Fong, D. K. C., & Han, X. (2019). Tourism demand forecasting: A deep learning approach. Annals of Tourism Research, 75, 410-423. https://doi.org/10.1016/j.annals.2019.01.014

Li, G., Song, H., & Witt, S. F. (2005). Recent developments in econometric modeling and forecasting. Journal of Travel Research, 44(1), 82-99. https://doi.org/10.1177/0047287505276594

Li, H., Hu, M., & Li, G. (2020). Forecasting tourism demand with multisource big data. Annals of Tourism Research, 83, 102912. https://doi.org/10.1016/j.annals.2020.102912

Li, X., Li, H., Pan, B., & Law, R. (2021). Machine Learning in Internet Search Query Selection for Tourism Forecasting. Journal of Travel Research, 60(6), 1213-1231. https://doi.org/10.1177/0047287520934871

Li, X., Pan, B., Law, R., & Huang, X. (2017). Forecasting tourism demand with composite search index. Tourism Management, 59, 57-66. https://doi.org/10.1016/j.tourman.2016.07.005

Lin, V. S., & Song, H. (2015). A review of Delphi forecasting research in tourism. Current Issues in Tourism, 18(12), 1099-1131. https://doi.org/10.1080/13683500.2014.967187

Liu, A., Lin, V. S., Li, G., & Song, H. (2020). Ex Ante Tourism Forecasting Assessment. Journal of Travel Research. 61 (1). 64-75. https://doi.org/10.1177/0047287520974456

Liu, A., Vici, L., Ramos, V., Giannoni, S., & Blake, A. (2021). Visitor arrivals forecasts amid COVID-19: A perspective from the Europe team. Annals of Tourism Research, 88.103182. https://doi.org/10.1016/j.annals.2021.103182

Liu, H., Liu, W., & Wang, Y. (2021). A Study On The Influencing Factors Of Tourism Demand From Mainland China To Hong Kong. Journal of Hospitality and Tourism Research, 45(1), 171-191. https://doi.org/10.1177/1096348020944435

Liu, H., Liu, Y., Wang, Y., & Pan, C. (2019). Hot topics and emerging trends in tourism forecasting research: A scientometric review. Tourism Economics, 25(3), 448-468.

Liu, Y., Hsiao, A., & Ma, E. (2020). Segmenting Tourism Markets Based on Demand Growth Patterns: A Longitudinal Profile Analysis Approach. Journal of Hospitality and Tourism Research. 45 (6). 967-997. https://doi.org/10.1177/1096348020962564

Lizano, H., & Sánchez, P. P. (2020). Technological evolution in tourism: A bibliometric analysis. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 2020(E36), 480-495.

López, R. F., Alonso, J. A. V., Silverio, A. Q., & González, L. D. (2021). The tourist demand of the hotel chain. Time series for a forecast model. Visión de Futuro, 25(1), Article 1. https://visiondefuturo.fce.unam.edu.ar/index.php/visiondefuturo/article/view/453

Mach, L., Ponting, J., Brown, J., & Savage, J. (2018). Riding waves of intra-seasonal demand in surf tourism: Analysing the nexus of seasonality and 21st century surf forecasting technology [Article in Press]. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049604323&doi=10.1080%2f11745398.2018.1491801&partnerID=40&md5=789a59c11c81fa358897f1255c54258a

Mobarakeh, N. A., Shahzad, M. K., Baboli, A., & Tonadre, R. (2017). Improved Forecasts for uncertain and unpredictable Spare Parts Demand in Business Aircraft’s with Bootstrap Method. International Federation of Automatic Control (IFAC). https://doi.org/10.1016/j.ifacol.2017.08.2379

Niamjoy, P., & Phumchusri, N. (2020). Forecasting Inbound Tour Daily Demand with Multi Seasonality Pattern: A Case Study of a Tour Operator in Thailand. IEEE Int. Conf. Ind. Eng. Appl., ICIEA, 1044-1048. https://doi.org/10.1109/ICIEA49774.2020.9101918

Önder, I. (2017). Forecasting tourism demand with Google trends: Accuracy comparison of countries versus cities. International Journal of Tourism Research, 19(6), 648-660. https://doi.org/10.1002/jtr.2137

Önder, I., Gunter, U., & Scharl, A. (2019). Forecasting tourist arrivals with the help of web sentiment: A mixed-frequency modeling approach for big data. Tourism Analysis, 24(4), 437-452. https://doi.org/10.3727/108354219X15652651367442

Padmaja, N., & Sudha, T. (2019). A systematic review of application of big data analytics in tourism sector. Journal of Computational and Theoretical Nanoscience, 16(5-6), 1832-1838. https://doi.org/10.1166/jctn.2019.8107

Palácios, H., de Almeida, M. H., & Sousa, M. J. (2021). A bibliometric analysis of trust in the field of hospitality and tourism. International Journal of Hospitality Management, 95. 102944. https://doi.org/10.1016/j.ijhm.2021.102944

Prilistya, S. K., Permanasari, A. E., & Fauziati, S. (2020). Tourism Demand Time Series Forecasting: A Systematic Literature Review. ICITEE - Proc. Int. Conf. Inf. Technol. Electr. Eng., 156-161. https://doi.org/10.1109/ICITEE49829.2020.9271732

Qiu, R. T. R., Wu, D. C., Dropsy, V., Petit, S., Pratt, S., & Ohe, Y. (2021). Visitor arrivals forecasts amid COVID-19: A perspective from the Asia and Pacific team. Annals of Tourism Research, 88, 103155. https://doi.org/10.1016/j.annals.2021.103155

Ramos-Carrasco, R., Galvez-Diaz, S., Nunez-Ponce, V., & Alvarez-Merino, J. (2019). Artificial neural networks to estimate the forecast of tourism demand in Peru. SHIRCON - IEEE Sci. Humanit. Int. Res. Conf. 2019 IEEE Sciences and Humanities International Research Conference, SHIRCON 2019. https://doi.org/10.1109/SHIRCON48091.2019.9024873

Rice, W. L., Park, S. Y., Pan, B., & Newman, P. (2019). Forecasting campground demand in US national parks. Annals of Tourism Research, 75, 424-438. https://doi.org/10.1016/j.annals.2019.01.013

Rodríguez-Soler, R., Uribe-Toril, J., & De Pablo Valenciano, J. (2020). Worldwide trends in the scientific production on rural depopulation, a bibliometric analysis using bibliometrix R-tool. Land Use Policy, 97, 104787. https://doi.org/10.1016/j.landusepol.2020.104787

Saayman, A., & Botha, I. (2017). Non-linear models for tourism demand forecasting. Tourism Economics, 23(3), 594-613. https://doi.org/10.5367/te.2015.0532

Saayman, A., & de Klerk, J. (2019). Forecasting tourist arrivals using multivariate singular spectrum analysis. Tourism Economics, 25(3), 330-354. https://doi.org/10.1177/1354816618768318

Sánchez-Lozano, G., Pereira, L. N., & Chávez-Miranda, E. (2021). Big data hedonic pricing: Econometric insights into room rates’ determinants by hotel category. Tourism Management, 85. 104308. https://doi.org/10.1016/j.tourman.2021.104308

Shabri, A., & Samsudin, R. (2019). Application of improved GM(1, 1) models in seasonal monthly tourism demand forecast. Proc. - Int. Conf. Artif. Intell. Data Sci., AiDAS, 186-190. https://doi.org/10.1109/AiDAS47888.2019.8970945

Sharma, P., Singh, R., Tamang, M., Singh, A. K., & Singh, A. K. (2021). Journal of teaching in travel &tourism: A bibliometric analysis. Journal of Teaching in Travel and Tourism, 21(2), 155-176. https://doi.org/10.1080/15313220.2020.1845283

Silva, E. S., Ghodsi, Z., Ghodsi, M., Heravi, S., & Hassani, H. (2017). Cross country relations in European tourist arrivals. Annals of Tourism Research, 63, 151-168. https://doi.org/10.1016/j.annals.2017.01.012

Silva, E. S., Hassani, H., Heravi, S., & Huang, X. (2019). Forecasting tourism demand with denoised neural networks. Annals of Tourism Research, 74, 134-154. https://doi.org/10.1016/j.annals.2018.11.006

Singh, R., Sibi, P. S., & Sharma, P. (2021). Journal of ecotourism: A bibliometric analysis. Journal of Ecotourism. 21 (1). 37-53. https://doi.org/10.1080/14724049.2021.1916509

Singh, R., Sibi, P. S., Sharma, P., Tamang, M., & Singh, A. K. (2021). Twenty Years of Journal of Quality Assurance in Hospitality & Tourism: A Bibliometric Assessment. Journal of Quality Assurance in Hospitality and Tourism. https://doi.org/10.1080/1528008X.2021.1884931

Song, H., & Li, G. (2008). Tourism demand modelling and forecasting—A review of recent research. Tourism Management, 29(2), 203-220. https://doi.org/10.1016/j.tourman.2007.07.016

Song, H., Liu, A., Li, G., & Liu, X. (2021). Bayesian bootstrap aggregation for tourism demand forecasting. International Journal of Tourism Research. 23 (5). 914-927. https://doi.org/10.1002/jtr.2453

Song, H., Qiu, R. T. R., & Park, J. (2019). A review of research on tourism demand forecasting: Launching the Annals of Tourism Research Curated Collection on tourism demand forecasting. Annals of Tourism Research, 75, 338-362. https://doi.org/10.1016/j.annals.2018.12.001

Starosta, K., Budz, S., & Krutwig, M. (2019). The impact of German-speaking online media on tourist arrivals in popular tourist destinations for Europeans. Applied Economics, 51(14), 1558-1573. https://doi.org/10.1080/00036846.2018.1527463

Sun, S., Wei, Y., Tsui, K.-L., & Wang, S. (2019). Forecasting tourist arrivals with machine learning and internet search index. Tourism Management, 70, 1-10. https://doi.org/10.1016/j.tourman.2018.07.010

Vergori, A. S. (2017). Patterns of seasonality and tourism demand forecasting. Tourism Economics, 23(5), 1011-1027. https://doi.org/10.1177/1354816616656418

Volchek, K., Liu, A., Song, H., & Buhalis, D. (2019). Forecasting tourist arrivals at attractions: Search engine empowered methodologies. Tourism Economics, 25(3), 425-447. https://doi.org/10.1177/1354816618811558

Wang, M., & Song, H. (2010). Air Travel Demand Studies: A Review. Journal of China Tourism Research, 6(1), 29-49. https://doi.org/10.1080/19388160903586562

Wen, L., Liu, C., Song, H., & Liu, H. (2021). Forecasting Tourism Demand with an Improved Mixed Data Sampling Model. Journal of Travel Research, 60(2), 336-353. https://doi.org/10.1177/0047287520906220

Wu, D. C., Song, H., & Shen, S. (2017). New developments in tourism and hotel demand modeling and forecasting. International Journal of Contemporary Hospitality Management, 29(1), 507-529. https://doi.org/10.1108/IJCHM-05-2015-0249

Xie, G., Li, X., Qian, Y., & Wang, S. (2021). Forecasting tourism demand with KPCA-based web search indexes. Tourism Economics, 27(4), 721-743. https://doi.org/10.1177/1354816619898576

Xie, G., Qian, Y., & Wang, S. (2021). Forecasting Chinese cruise tourism demand with big data: An optimized machine learning approach. Tourism Management, 82, 104208. https://doi.org/10.1016/j.tourman.2020.104208

Yu, H. (2021). Development of tourism resources based on fpga microprocessor and convolutional neural network. Microprocessors and Microsystems, 82. 103795. https://doi.org/10.1016/j.micpro.2020.103795

Zhang, B., Huang, X., Li, N., & Law, R. (2017). A novel hybrid model for tourist volume forecasting incorporating search engine data. Asia Pacific Journal of Tourism Research, 22(3), 245-254. https://doi.org/10.1080/10941665.2016.1232742

Zhang, B., Li, N., Shi, F., & Law, R. (2020). A deep learning approach for daily tourist flow forecasting with consumer search data. Asia Pacific Journal of Tourism Research, 25(3), 323-339. https://doi.org/10.1080/10941665.2019.1709876

Zhang, C., Jiang, F., Wang, S., & Sun, S. (2021). A new decomposition ensemble approach for tourism demand forecasting: Evidence from major source countries in Asia-Pacific region. International Journal of Tourism Research. 23 (5). 832-845. https://doi.org/10.1002/jtr.2445

Zhang, H., Song, H., Wen, L., & Liu, C. (2021). Forecasting tourism recovery amid COVID-19. Annals of Tourism Research, 87. https://doi.org/10.1016/j.annals.2021.103149

Zhang, Y., Li, G., Muskat, B., & Law, R. (2021). Tourism Demand Forecasting: A Decomposed Deep Learning Approach. Journal of Travel Research, 60(5), 981-997. https://doi.org/10.1177/0047287520919522

Zhang, Y., Li, G., Muskat, B., Law, R., & Yang, Y. (2020). Group pooling for deep tourism demand forecasting. Annals of Tourism Research, 82, 102899. https://doi.org/10.1016/j.annals.2020.102899

Zhang, Y., Li, G., Muskat, B., Vu, H. Q., & Law, R. (2021). Predictivity of tourism demand data. Annals of Tourism Research, 89, 103234. https://doi.org/10.1016/j.annals.2021.103234

Publicado

2023-10-17

Cómo citar

Fernàndez Lòpez, R., Vilalta-Alonso, . J. A. ., Alonso Porraspita, D., Blanco Zamora, Yankiel ., & Núñez González, Saray. (2023). Modelos de pronósticos de la demanda turística: una revisión de los estudios actuales. Revista De Métodos Cuantitativos Para La Economía Y La Empresa, 36, 1–25. https://doi.org/10.46661/rev.metodoscuant.econ.empresa.6191

Número

Sección

Artículos