The Accuracy of Forecasts Made for the Structure of Consumer Basket: A Comparative Analysis between Euro Area and Romania // La exactitud de las predicciones para la estructura de cesta del consumo: un análisis comparativo entre la zona euro y Rumanía

Autores/as

  • Mihaela Bratu (Simionescu) Academy of Economic Studies, Bucharest

Palabras clave:

Forecasts, Markov chains, accuracy indicators, consumer basket, harmonized index of consumer prices, previsiones, cadenas de Markov, indicadores de precisión, cesta del consumo, índice de precios al consumo armonizado

Resumen

In this study, the Markov chain method was used to predict the structure of consumer basket for euro zone and Romania, a country that tries to fulfill the entrance conditions in euro area, by using the same methodology for the determination of harmonized index of consumer prices (HICP). The ex-post assessment of forecasts for 2010-2012 evidences the superiority of forecasts accuracy for euro area based on this method. The highest degree of accuracy in each territorial unit is registered for services weights, according to U Theil's statistic, even if the absolute indicators for accuracy are lower for other weights predictions. It is anticipated that for 2013 the Markov chain method will predict the best foreach consumer basket the food weights forecasts for euro area and the services weights predictions for Romania.

------------------------------------

En este estudio se aplica el método de las cadenas de Markov para predecir la estructura de la cesta de consumo para la zona euro y para Rumanía, un país que trata de cumplir las condiciones de entrada en la zona euro. En ambos casos, se sigue la misma metodología para la determinación del índice armonizado de precios al consumo (IPCA). La evaluación ex-post de las previsiones para el período 2010-2012 pone de manifiesto la mejora de la precisión de las previsiones para la zona euro al usar este método. El mayor grado de precisión en cada unidad territorial se ha registrado para los pesos de los servicios, de acuerdo con el estadístico U de Theil, aunque los indicadores absolutos de precisión son más bajos para otras predicciones de pesos. Se considera que las predicciones para el año 2013 por el método de las cadenas de Markov serán más precisas para cada cesta de consumo en las previsiones de los pesos para los alimentos para la zona euro y para las de los pesos de los servicios para Rumanía.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abreu, I. (2011) “International organizations' vs. private analysts' forecasts: an evaluation”, Banco de Portugal, available at: http://www.bportugal.pt/en-US/BdP%20Publications%20Research/wp201120.pdf

Allan, G. (2012) “Evaluating the usefulness of forecasts of relative growth”, Strathclyde, Discussion Papers in Economics, No. 12-14.

Avery, P.J. and Henderson, D.A. (1999) “Fitting Markov chain models to discrete state series such as DNA sequences”, Journal of the Royal Statistical Society, 48 (1), pp. 53–61.

Billingsley, P. (1995) “Probability and Measure”, 3rd edition, Wiley, New York, ISBN: 0-471-0071-02.

Bratu, M. (2012) “Strategies to Improve the Accuracy of Macroeconomic Forecasts in USA”, LAP LAMBERT Academic Publishing, ISBN-13: 978-3848403196.

Chung, K.L. (1960) “Markov Chains with Stationary Transition Probabilities”, Springer-Verlag, Berlin.

D'Agostino, A., Gambetti, L., and Giannone, D. (2010) “Macroeconomic forecasting and structural change”, European Central Bank, Working Paper Series 1167.

Deschamps, B. and Bianchi, P. (2012) “An evaluation of Chinese macroeconomic forecasts”, Journal of Chinese Economics and Business Studies, Volume 10, Number 3, August 2012 , pp. 229–246.

Doob, J.L. (1953) “Stochastic Processes”, Wiley, New York.

Dovern, J. and Weisser, J. (2011) “Accuracy, unbiasedness and efficiency of professional macroeconomic forecasts: An empirical comparison for the G7”, International Journal of Forecasting, 27 (2), pp. 452–465.

Feller, W. (1970) “An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd edition, Wiley.

Feller, W. (1971) “An Introduction to Probability Theory and Its Applications”, Vol. 2, Wiley, ISBN: 0-471-25709-5.

Franses, P.H., McAleer, M., and Legerstee, R. (2012) “Evaluating macroeconomic forecasts: a concise review of some recent developments”, Working Paper, available at: http://eprints.ucm.es/15603/

Heilemann, U. and Stekler, H. (2010) “Introduction to ‘The future of macroeconomic forecasting’”, International Journal of Forecasting, 23(2), pp. 159–165.

Hsu, D. and Chiao, C.H. (2012) “Relative accuracy of analysts' earnings forecasts over time: a Markov chain analysis”, Review of Quantitative Finance and Accounting, 04/2012, 37(4), pp. 477–507. DOI: 10.1007/s11156-010-0214-z.

Hyndman, R.J. (2006) “The Times: a chronology of the Bible”, 3rd edition, Christadelphian Scripture Study Service, Adelaide.

Hyndman, R.J. and Koehler, A.B. (2006) “Another look at measures of forecast accuracy”, International Journal of Forecasting, 22 (4), pp. 679–688.

Jerrum, M. and Sinclair, A. (1989) “Approximating the permanent”, SIAM Journal on Computing, Vol. 18, pp. 1149–1178.

Kemeny, J.G. and Snell, J.L. (1976) “Finite Markov chains”, Springer, Jul. 1976.

Kocięcki, A., Kolasa, M., and Rubaszek, M. (2012) “A Bayesian method of combining judgmental and model-based density forecasts”, Economic Modelling, Vol. 29 (4), pp. 1349–1355.

Koehler, A.B. (2001) “The asymmetry of the sAPE measure and other comments on the M3-competition”, International Journal of Forecasting, Vol. 17, pp. 570–574.

Lee, J. and Shin, M. (2009) “Stock forecasting using hidden Markov process”, available at: http://cs229.stanford.edu/proj2009/ShinLee.pdf

Leitch, G. and Tanner, J.E. (1991) “Economic Forecast Evaluation: Profitts Versus the Conventional Error Measures”, The American Economic Review, 81/3, 580.

Leslie, B. (2008) “A Markov chains based transition matrices approach to forecasting airline seat demand”, City University of New York, ProQuest.

Makridakis, S. (1993) “Accuracy measures: Theoretical and practical concerns,” International Journal of Forecasting, 9, pp. 527–529.

Makridakis, S. and Hibon, M. (1979) “Accuracy of forecast-an empirical investigation (with discussion)”, Journal of the Royal Statistical Society, 142, pp. 97–145.

Martin, C.A. and Witt, S.F. (2002) “Accuracy of econometric forecasts of tourism”, Annals of Tourism Research, 16, pp. 407–428.

Meese, R.A. and Rogoff, K. (1983) “Empirical exchange rate models of the seventies: Do they fit out of sample?”, Journal of International Economics, Vol. 14, Issue 1-2 (February), pp. 3–24.

Meyn, S.P. and Tweedie, R.L. (1993) “Markov Chains and Stochastic Stability”, Springer-Verlag, London.

Norris, J.R. (1997) “Markov Chains, No. 2”, Cambridge University Press, Series in Statistical and Probabilistic Mathematics.

Nummelin, E. (1984) “General Irreducible Markov Chains and Non-negative Operators”, Cambridge University Press, Cambridge.

Österholm, P. (2012) “The limited usefulness of macroeconomic Bayesian VARs when estimating the probability of a US recession”, Journal of Macroeconomics, Vol. 34 (1), pp. 76–86.

Resnick, S.I. (1994) “Limit distributions for linear programming time series estimators”, Stoch. Processes Appl., 51, pp. 135–165.

Revuz, D. (1984) “Markov chains”, 2nd edition, North-Holland Mathematical Library, 11, North-Holland Publishing Co., Amsterdam.

Robert, C.P. and Casella, G. (2000) “Monte Carlo Statistical Methods”, 2nd edition, Springer, New York.

Sakamoto, H. (2012) “Forecasting model of structural change in Japan using Markov chain”, available at: http://management.kochi-tech.ac.jp/ssms_papers/sms11-5261_f68ec19efdfcc47201eb045266e9d4b3.pdf

Spircu, L. and Ciumara, R. (2007) “Econometrics”, Editura Pro Universitaria, Bucharest.

Strauch, R. (2009) “Fiscal Governance in Europe”, Cambridge University Press, Cambridge.

Tashman, L. (2000) “An Evaluation of Forecasting Software: Do the Programs Implement Basic Principles and Best Practices”, in: Principles of Forecasting: A Handbook for Researchers and Practitioners.

Yokum, J., and Armstrong, J.S. (1995) “Beyond Accuracy: Comparison of Criteria Used to Select Forecasting Methods”, International Journal of Forecasting, 11, pp. 591–597.

Zhang, D. and Zhang, X. (2009) “Study on forecasting the stock market trend based on stochastic analysis method”, International Journal of Business and Management, Vol. 4, Nr. 6.

Publicado

2016-11-04

Cómo citar

Bratu (Simionescu), M. (2016). The Accuracy of Forecasts Made for the Structure of Consumer Basket: A Comparative Analysis between Euro Area and Romania // La exactitud de las predicciones para la estructura de cesta del consumo: un análisis comparativo entre la zona euro y Rumanía. Revista De Métodos Cuantitativos Para La Economía Y La Empresa, 15, Páginas 87 a 100. Recuperado a partir de https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2222

Número

Sección

Artículos