Plan maestro de producción basado en programación lineal entera para una empresa de productos químicos // Master Production Scheduling Based on Integer Linear Programming for a Chemical Company

Autores/as

  • Yunuem Reyes Zotelo Sección de Estudios de Posgrado e Investigación Unidad Profesional Interdisciplinaria de Ingeniería y Ciencias Sociales y Administrativas Instituto Politécnico Nacional
  • Josefa Mula Centro de Investigación en Gestión e Ingeniería de Producción Universitat Politècnica de València
  • Manuel Díaz-Madroñero Centro de Investigación en Gestión e Ingeniería de Producción Universitat Politècnica de València
  • Eduardo Gutiérrez González Sección de Estudios de Posgrado e Investigación Unidad Profesional Interdisciplinaria de Ingeniería y Ciencias Sociales y Administrativas Instituto Politécnico Nacional

Palabras clave:

planificación de la producción, plan maestro de producción (PMP), programación lineal entera, industria química, production planning, master production scheduling (MPS), integer linear programming, chemical industry

Resumen

En este trabajo se propone un modelo de programación lineal entera para planificar la producción de un conjunto de artículos finales con demanda independiente. El modelo para la planificación maestra de producción (PMP) está diseñado considerando los costes de producción e inventario, así como las restricciones definidas por el mismo proceso productivo en cuanto a instalaciones y tiempos de producción. El objetivo del modelo propuesto es la minimización de los costes implicados; concretamente, el tiempo ocioso y extra de los recursos, así como la consideración de un nivel mínimo de servicio ligado a la demanda diferida. La validación del modelo considera datos pertenecientes a la demanda de cada producto en un horizonte de 12 semanas y compara cinco escenarios en los que se modifican algunos aspectos del sistema y diferentes niveles de servicio. Por último, los resultados obtenidos para cada uno de los escenarios exponen la mejora obtenida por el modelo propuesto respecto al procedimiento actual en la empresa objeto de estudio. 

------------------------------------

In this work, we propose an integer linear programming model for production scheduling of a group of finished products with independent demand. The model for the master production scheduling (MPS) is designed by considering production and inventory costs, as well as the productive process constraints regarding installations and production times. The aim of the proposed model is the minimization of the costs involved; specifically, undertime and overtime costs of resources, as well as the consideration of a minimum service level related to the deferred demand. The validation of the model considers data belonging to the demand of each product in a 12-week planning horizon and compares five scenarios in which some characteristics of the system and different service levels are modified. Finally, the results obtained for each one of the scenarios expose the improvement obtained by the proposed model with regard to the current procedure in the studied company.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Boiteux, O.D.; Corominas, A. y Lusa, A. (2007): “Estado del arte sobre planificación agregada de la producción”. Enginyeria d’Organització i Logística Industrial, 4(2), 1–39.

Brandenburg, M. y Tölle, F.J. (2009): “MILP-based campaign scheduling in a speciality chemicals plant: a case study”. OR Spectrum, 31, 141–166.

Buschkühl, L.; Sahling, F.; Helber, S. y Tempelmeier, H. (2010): “Dynamic capacitated lot-sizing problems: A classification and review of solution approaches”. OR Spectrum, 32, 231–261.

Díaz-Madroñero, M.; Mula, J. y Peidro, D. (2014): “A review of discrete-time optimization models for tactical production planning”. International Journal of Production Research, 52(17), 5171–5205.

Dzielinski, B.P. y Gomory, R.E. (1965): “Optimal programming of lot sizes, inventory and labor allocations”. Management Science, 11(9), 874–890.

Escobar, P.; Giraldo, J.A. y Cárdenas, D.M. (2012): “Programación de sistemas de producción híbridos, para inventario/bajo pedido, mediante un proceso analítico jerárquico de ordenación grupal (GAHPO) ”. Información Tecnológica, 23(5), 33–46.

Flores, B.E. y Whybark, D.C. (1986): “Multiple criteria ABC analysis”. International Journal of Operations and Production Management, 6(3), 38–46.

Grunow, M.; Günther, H. O. y Lehmann, M. (2002): “Campaign planning for multi-stage batch processes in the chemical industry”. OR Spectrum, 24, 281–314.

Hax, A.C. y Meal, H.C. (1975): “Hierarchical integration of production planning and scheduling”. En M.A. Geisler (ed.): TIMS Studies in Management Sciences, Volume 1: Logistics. Nueva York: North Holland/American Elsevier, pp. 53–69.

Lasdon, L.S. y Terjung, R.C. (1971): “An efficient algorithm for multi-item scheduling”. Operations Research, 19, 946–969.

Mangiameli, P.M. (1979): The effects of managerial policies on aggregate plans, the master production schedule, and departmental plans. Tesis doctoral, Ohio: Ohio State University.

Moniz, S.; Barbosa-Póvoa, A.P. y de Sousa, J.P. (2014): “Simultaneous regular and non-regular production scheduling of multipurpose batch plants: A real chemical-pharmaceutical case study”. Computers and Chemical Engineering, 67, 83–102.

Mula, J.; Lyons, A.C.; Hernández, J.E. y Poler, R. (2014): “An integer linear programming model to support customer-driven material planning in synchronised, multi-tier supply chains”. International Journal of Production Research, 52(14), 4267–4278.

Mula, J.; Poler, R. y García, J.P. (2006a): “MRP with flexible constraints: A fuzzy mathematical programming approach”. Fuzzy Sets and Systems, 157(1), 74–97.

Mula, J.; Poler, R.; García-Sabater, G.S. y Lario, F.C. (2006b): “Models for production planning under uncertainty: A review”. International Journal of Production Economics, 103(1), 271–285.

Osorio, J.C. y Motoa, T.G. (2008): “Planificación jerárquica de la producción en un job shop flexible”. Revista Facultad de Ingeniería Universidad de Antioquía, 44, 158–171.

Portela, R.V. (2007): “La planeación y programación de la producción en la pyme”. AVANCES. Investigación en Ingenieria, 6(6), 40–57.

Quadt, D. y Kuhn, H. (2008): “Capacitated lot-sizing with extensions: A review”. 4OR, 6(1), 61–83.

Till, J.; Sand, G.; Urselmann, M. y Engell, S. (2007): “A hybrid evolutionary algorithm for solving two-stage stochastic integer programs in chemical batch scheduling”. Computers and Chemical Engineering, 31(5-6), 630–647.

Ul Hassan, M. y Stockhammar, P. (2016): “Fitting probability distributions to economic growth: a maximum likelihood approach”. Journal of Applied Statistics, 43(9), 1583–1603.

Venkataraman, R. y Nathan, J. (1994): “Master Production Scheduling for a Process Industry Environment: A Case Study”. International Journal of Operations and Production Management, 14(10), 44–53.

Publicado

2017-12-20

Cómo citar

Reyes Zotelo, Y., Mula, J., Díaz-Madroñero, M., & Gutiérrez González, E. (2017). Plan maestro de producción basado en programación lineal entera para una empresa de productos químicos // Master Production Scheduling Based on Integer Linear Programming for a Chemical Company. Revista De Métodos Cuantitativos Para La Economía Y La Empresa, 24, Páginas 147 a 168. Recuperado a partir de https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2885

Número

Sección

Artículos