La productividad laboral en la era de la IA: Perspectivas a partir de Datos de Panel

Autores/as

DOI:

https://doi.org/10.46661/rev.metodoscuant.econ.empresa.9623

Palabras clave:

Superfoods, política industrial, análisis de brecha de precios

Resumen

Este estudio examina cómo la productividad laboral se ve afectada por los avances relacionados con la IA mediante el examen de un conjunto de datos de panel equilibrado de empresas que operan en tres áreas diferentes entre 2014 y 2023. El estudio utiliza modelos OLS combinados, de efectos fijos (FE) y de efectos aleatorios (RE) para evaluar los efectos de factores importantes como las patentes relacionadas y no relacionadas con la IA, la inversión en I+D, la mano de obra y la rotación de las empresas sobre la productividad laboral, la variable dependiente. Según los resultados, las patentes relacionadas con la IA tienen un notable impacto positivo en la productividad laboral. Por otra parte, la mano de obra tiene una correlación negativa con la productividad, lo que indica ineficiencias en la gestión de plantillas más grandes o rendimientos decrecientes a escala. Es interesante observar que la rotación de personal y la productividad están positivamente correlacionadas, lo que podría ser resultado de la optimización de la mano de obra o de la introducción de nuevas perspectivas y habilidades. En comparación con el modelo OLS agrupado, el modelo FE, que tiene en cuenta la heterogeneidad específica de las empresas, explica en torno al 45,7% de la varianza de la productividad. Las pruebas de diagnóstico verifican la resistencia de los modelos y su validez mejora con correcciones de autocorrelación y heteroscedasticidad.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Acemoglu, D., & Restrepo, P. (2022). Tasks, Automation, and the Rise in U.S. Wage Inequality. Econometrica, 90(5), 1973-2016. https://doi.org/10.3982/ECTA19815

Aghion, P. and Howitt, P. (1992). A Model of Growth Through Creative Destruction, Econometrica, 60 (2), 323-351. https://doi.org/10.2307/2951599

Alderucci, D., Branstetter, L., Hovy, E., Runge, A. and Zolas, N. (2020). Quantifying the impact of AI on productivity and labour demand: Evidence from U.S. census microdata. In Paper presented at the Allied Social Science Associations—ASSA 2020 Annual Meeting.

Ando, M. and Kimura, F. (2015). Globalisation and domestic operations: Applying the JC/JD method to Japanese manufacturing firms, Asian Economic Papers, 14: 1-35. https://doi.org/10.1162/ASEP_a_00342

Ando, M. and Kimura, F. (2017). Job Creation and Destruction at the Levels of Intra-firm Sections, Firms, and Industries in Globalisation: The Case of Japanese Manufacturing Firms, RIETI Discussion Paper Series, 17-E-100, Tokyo: Research Institute of Economy, Trade and Industry.

Antonelli, C. (2009), The Economics of Innovation: From the Classical Legacies to the Economics of Complexity, Economics of Innovation and New Technology, 18(7): 611-646. https://doi.org/10.1080/10438590802564543

Arntz, M., Gregory, T. & Zierahn, U. (2016). The Risk of Automation for Jobs in OECD Countries: A Comparative Analysis. OECD Social, Employment and Migration Working Papers, No. 189.

Author, D. (2023). Applying AI to Rebuild Middle Class Jobs,NATIONAL BUREAU OF ECONOMIC RESEARCH, Working Paper 32140, http://www.nber.org/papers/w32140

Baddeley, M. and Barrowclough, D. (2009). Running regressions: a practical guide to quantitative research in economics, finance and development Studies. Cambridge: Cambridge Univ. Press.

Barbieri, L., Mussida, C., Piva, M. and Vivarelli, M. (2020). Testing the employment and skill impact of new technologies. In K. Zimmermann (Ed.) Handbook of labour, human resources and population economics. Cham: Springer.

Bessen, J. (2019). Automation and jobs: when technology boosts employment, Economic Policy, CEPR, CESifo, Sciences Po; 34(100),589-626. https://ideas.repec.org/a/oup/ecpoli/v34y2019i100p589-626..html

Bloom, N., Jones, C. I. and Van Reenen, J. (2020). Are ideas getting harder to find? American Economic Review, 110(4): 1104–1144. https://doi.org/10.1257/aer.20180338

Bresnahan, T. (2019). Technological change in ICT in light of ideas first learned about the machine tool industry. Industrial and Corporate Change, 28: 331–349. https://doi.org/10.1093/icc/dty076

Brynjolfsson, E., Rock, D. and Syverson, C. (2019). Artificial Intelligence and the modern productivity paradox: A clash of expectations and statistics. In A. Agrawal, J. Gans, and A. Goldfarb (Eds.), The economics of Artificial Intelligence: an agenda. Chicago: University of Chicago Press and NBER.

Brynjolfsson, E. and McAfee, A. (2014). The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. W. W. Norton.

Chatterjee, S., Chaudhuri, R., Vrontis, D., Thrassou, A. & Ghosh, S.K. (2021). Adoption of artificial intelligence-integrated CRM systems in agile organisations in India, Technological Forecasting and Social Change, 168,120783.

Chui, M., Manyika, J., Miremadi, M., Henke, N., Chung, R., Nel, P., & Malhotra, S. (2018). Notes from the AI frontier: Insights from hundreds of use cases. McKinsey Global Institute. http://straty.com/wp-content/uploads/2018/04/McKinsey-AI-Frontier-paper-April-2018.pdf

Frank, M.R., Autor, D., Bessen, J.E., Brynjolfsson, M. Cebrian, D.J., Deming, M., Feldman, M., Groh, M., Lobo, J., Moro, E., Wang, D., Youn, H., and Rahwan, I. (2019). Toward understanding the impact of Artificial Intelligence on labour. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 116(14): 6531-6539. https://doi.org/10.1073/pnas.1900949116

Goldfarb, A., Taska, B. and Teodoridis, F. (2020). Could machine learning be a general-purpose technology? Evidence from online job postings. 52(1): 104653 https://doi.org/10.1016/j.respol.2022.104653

Gordon, R. J. (2016). The rise and fall of American growth: The US standard of living since the Civil War. Princeton: Princeton University Press.

Gordon, R. J. (2018). Why Has Economic Growth Slowed When Innovation Appears to be Accelerating? NBER Working Paper 24554. National Bureau for Economic Research. http://www.nber.org/papers/w24554

Graetz, G. and Michaels, G. (2018). Robots at Work, The Review of Economics and Statistics, MIT Press, 100(5): 753-768. https://doi.org/10.1162/rest_a_00754

Greene, W. (2008). Econometric Analysis. 6th Edition, Prentice-Hall. Upper Saddle River.

Gries, T. And Naudié, W. (2018). Artificial Intelligence, jobs, inequality and productivity: Does aggregate demand matter? IZA DP No. 12005, Bonn. https://doi.org/10.2139/ssrn.3301777

Griliches, Z. (1990). Patent Statistics as Economic Indicators: A Survey, Journal of Economic Literature, 18(4): 1661–707.

Gujarati, N. D. (2006). Essentials of Econometrics (4th ed.). United States Military Academy.

Hausman, J., Hall, B. and Griliches, Z. (1984). Econometric models for count data with an application to the patents-R&D relationship, Econometrica, 52: 909–938. https://doi.org/10.2307/1911191

Hsiao, C. (2003). Analysis of Panel Data (2nd ed.). Cambridge University Press.

Jones, B. F. (2009). The burden of knowledge and the ‘Death of the Renaissance Man’: Is innovation getting harder? Review of Economic Studies, 76(1):283–317. https://doi.org/10.1111/j.1467-937X.2008.00531.x

Joutz, F. L. and Gardner, A.T. (1996). Economic Growth, Energy Prices and Technological Innovation, Southern Economic Journal, 62(3): 653–66.

Josten, C. and Lordan, G. (2020). Robots at work: Automatable and non-automatable jobs. In K. Zimmermann (Ed.), Handbook of labour, human resources and population economics. Cham: Springer.

Kortum, S. and Lerner, J. (1998). Does venture capital spur innovation?, Discussion paper, NBER Working Paper No. 6846.

Kortum, S. and Lerner, J. (2001). Does venture capital spur innovation?, In Entrepreneurial inputs and outcomes: New studies of entrepreneurship in the United States (Advances in the Study of Entrepreneurship, Innovation and Economic Growth, Vol. 13: 1-4), Emerald Group Publishing Limited, Leeds. https://doi.org/10.1016/S1048-4736(01)13003-1

Lazaroiu, G., and Rogalska, E. (2023). How generative artificial intelligence technologies shape partial job displacement and labour productivity growth. Oeconomia Copernicana, 14(3), 703–706. https://doi.org/10.24136/oc.2023.020

Lăzăroiu, G., Andronie, M., Iatagan, M., Geamănu, M., Ștefănescu, R., & Dijmărescu, I. (2022). Deep Learning-Assisted Smart Process Planning, Robotic Wireless Sensor Networks, and Geospatial Big Data Management Algorithms in the Internet of Manufacturing Things. ISPRS International Journal of Geo-Information, 11(5), 277. https://doi.org/10.3390/ijgi11050277

Los, B.; Timmer, M.P. and De Vries, G.J. (2014). The demand for skills, 1995-2008. A global supply chain perspective. OECD Economics Department Working Papers, 1141

Machin, S. and Van Reenen, J. (1998). Technology and Changes in Skill Structure: Evidence from Seven OECD Countries, The Quarterly Journal of Economics, 113(4),1215–1244,

https://doi.org/10.1162/003355398555883

Pfeffer, J. (1998). Seven Practices of Successful Organisations. California Management Review, 40(2), 96-124. https://doi.org/10.1177/0008125619884002001

Romer, P. M. (1990). Endogenous Technological Change, Journal of Political Economy, 98(5), 71-102. https://doi.org/10.3386/w3210

Solow, R. (1957). Technical Change and the Aggregate Production Function, Review of Economics and Statistics, 39, 312-320. https://doi.org/10.2307/1926047

Szostek, D.; Balcerzak, A.P. and Rogalska, E. (2023). Impact of employees' counterproductivity on interpersonal relationships in the context of company competitive potential: Application of SEM methodology for Poland, Journal of Competitiveness, 15(3), 19-42. https://doi.org/10.7441/joc.2023.03.02

Webb, M. (2019). The Impact of Artificial Intelligence on the Labour Market. Economics of Innovation eJournal. http://dx.doi.org/10.2139/ssrn.3482150

Zhang, J., Budhdeo, S., William, W. et al. Moving towards vertically integrated artificial intelligence development. npj Digit. Med. 5, 143 (2022). https://doi.org/10.1038/s41746-022-00690-x

Descargas

Publicado

2025-12-24

Cómo citar

Ince Yenilmez, M., & Yoshida, H. (2025). La productividad laboral en la era de la IA: Perspectivas a partir de Datos de Panel. Revista De Métodos Cuantitativos Para La Economía Y La Empresa, 40, 1–18. https://doi.org/10.46661/rev.metodoscuant.econ.empresa.9623

Número

Sección

Artículos

Artículos similares

<< < 19 20 21 22 23 24 25 26 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.