Efficiency and Persistence of Spanish Absolute Return Funds // Eficiencia y persistencia de los fondos de retorno absolutos españoles

Autores/as

  • Pablo Solórzano-Taborga Universidad Rey Juan Carlos
  • Ana Belén Alonso-Conde Universidad Rey Juan Carlos
  • Javier Rojo-Suárez Universidad Rey Juan Carlos

Palabras clave:

data envelopment analysis, persistence, hedge funds, absolute return funds, mutual funds, análisis envolvente de datos, persistencia, fondos de cobertura, fondos de retorno absoluto, fondos de inversión

Resumen

Performance measurement is an area of crucial interest in asset valuation and investment management. High volatility as well as time aggregation of returns, amongst other characteristics, may distort the results of conventional measures of performance. In this work, we study the performance of 115 Spanish Absolute Return Funds in the period 2010-2015, using the Sharpe, Treynor, Jensen and Modified Sharpe ratios. We then apply Data Envelopment Analysis to classify the funds in order to avoid the problems arising from the non-normality of their returns, since non-gaussian returns do not pose a problem in Data Envelopment Analysis implementation. In addition, we apply the Malkiel, Brown and Goetzman test and the Rude and Khan test in annual periods to determine the existence of persistence. Finally, we study the relationship between efficiency and persistence in order to determine the relationship between both measures and to support decision-making processes. The results show a significant relationship between cross efficiency and Modified Sharpe ratios as well as the existence of persistence for annual periods. Nevertheless, the results do not allow concluding any relationship amongst efficiency and persistence.

------------------------------------

La medida de la performance es un área de crucial interés en la valoración de activos y selección de inversiones. Elevadas volatilidades, así como la agregación temporal de rendimientos, entre otras características, pueden distorsionar los resultados de las medidas convencionales de performance. En este trabajo, estudiamos la performance de 115 fondos de retorno absoluto españoles en el periodo 2010–2015 usando los ratios de Sharpe, Treynor y Jensen y el ratio de Sharpe modificado. Posteriormente, para clasificar los fondos se aplica el Análisis Envolvente de Datos (Data Envelopment Analysis, DEA) en aras de evitar los problemas derivados de la no normalidad de los rendimientos, dado que rendimientos no gaussianos no suponen un problema a la hora de implementar el Análisis Envolvente de Datos. Adicionalmente, se aplica el test de Malkiel, Brown y Goetzman y el test de Rude y Khan en periodos anuales para determinar la existencia de persistencia. Finalmente. se estudia la relación entre eficiencia y persistencia con objeto de determinar la relación entre ambas medidas y apoyar el proceso de toma de decisiones. Los resultados muestran una significativa relación entre eficiencia cruzada y el ratio de Sharpe modificado así como la existencia de persistencia en periodos anuales. No obstante, los resultados no permiten concluir en ninguna relación directa entre eficiencia y persistencia.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Pablo Solórzano-Taborga, Universidad Rey Juan Carlos

Estudiante de Doctorado.

Universidad Rey Juan Carlos

 

Ana Belén Alonso-Conde, Universidad Rey Juan Carlos

Departamento de Economía de la Empresa.

Profesora Titular de Universidad.

Javier Rojo-Suárez, Universidad Rey Juan Carlos

Departamento de Economía de la Empresa.

Profesor Titular de Universidad.

Citas

Andersen, P. & Petersen N. C. (1993). A procedure for ranking efficient units in Data Envelopment Analysis. Management Science, 39 (1), 1261–1264.

Anderson, R., Brockman C., Giannikos, C., & McLeod, R., (2004). A non-parametric examination of real estate mutual fund efficiency. International Journal of Business and Economics, 3, 225–238.

Babalos, V., Doumpos, M., Philippas, N., & Zopounidis, C. (2012). Rating mutual funds through an integrated DEA-based multicriteria performance model: Design and information content. Working Paper, Technical University of Crete.

Basso, A. & Funari, S. (2001). A Data Envelopment Analysis approach to measure the mutual fund performance. European Journal of Operational Research, 135 (3), 477–492.

Basso, A. & Funari, S. (2003). Measuring the performance of ethical mutual funds: a DEA approach. Journal of the Operating Research Society, 54 (5), 521–531.

Berk, J. & Green, R. (2004). Mutual fund flows and performance in rational markets. Journal of Political Economy, 112 (6), 1269–1295.

Blake, D. & Timmermann, A. (1998). Mutual fund performance: Evidence from the UK. European Finance Review, 2 (1), 57–77.

Bollen, N. P. B. & Busse, J. A. (2005). Short-term persistence in mutual fund performance. The Review of Financial Studies, 18, 569–597.

Bowlin, W. F. (1998). Measuring performance: An introduction to Data Envelopment Analysis (DEA). Journal of Cost Analysis, 3 (1), 3–28.

Briec, W. & Kerstens, K. (2009). Multi-horizon Markowitz portfolio performance appraisals: A general approach. Omega, 37 (1), 50–62.

Briec, W., Kerstens, K., & Jokung, O. (2007). Mean-variance-skewness portfolio performance gauging: A general shortage function and dual approach, Management Science, 53 (1), 135–149.

Brooks, C. & Kat, H. M. (2002). The statistical properties of hedge fund index returns and their implications for investors. Journal of Alternative Investments. Fall 2002, 26–44.

Brown, S. J. & Goetzmann, W. N. (1995). Performance persistence. The Journal of Finance, 50 (2), 679–698.

Busse, J., Goyal A., & Wahal, S. (2008). Performance and persistence in institutional investment management. The Journal of Finance. 65, (2), 765–790.

Carhart, M. M. (1997). On persistence in mutual fund performance. The Journal of Finance, 52 (1), 57–82.

Carlson, R. (1970). Aggregate performance of mutual funds, 1948-1967. Journal of Financial and Quantitative Analysis, 5 (1), 1–32.

Chang, K. P. (2004). Evaluating mutual fund performance: An application of minimum convex input requirement set approach, Computers and operations research, 31 (6), 929–940.

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2 (6), 429–444.

Charnes, A., Cooper, W. W., & Rhodes, E. (1981): Evaluating program and managerial efficiency: An application of Data Envelopment Analysis to program Follow Through. Management Science, 27 (6), 668–97.

Charnes, A., Cooper, W. W., Lewin, A. Y., & Seiford, L. M. (1997). Data Envelopment Analysis: Theory, methodology and applications, (2nd ed.). New York: Kluwer Academic Publishers.

Choi, Y. K. & Murthi, B. P. S. (2001): Relative performance evaluation of mutual funds: A non-parametric approach. Journal of Business Finance & Accounting, 28 (7/8), 853–876.

Chu, J., Chen, F., & Leung, P. (2010). ETF Performance Measurement – Data Envelopment Analysis, Service Systems and Service Management (ICSSSM), 7th International Conference on IEEE, 28–30 June, 2010, Tokyo, Japan, 1–6.

Daraio, C. & Simar, L. (2006). A robust non-parametric approach to evaluate and explain the performance of mutual funds. European Journal of Operational Research, 175 (1), 516–542.

Doyle J. R. & Green, R. (1994). Efficiency and Cross-Efficiency in DEA. Derivations, Meanings and Uses. The Journal of the Operational Research Society. 45 (5), 567–578.

Elling, M. (2006). Performance measurement of hedge fund using Data Envelopment Analysis. Financial Markets and Portfolio Management, 20, 442.

Elton, E. J, Gruber, M. J., & Blake, C. R. (1996). The persistence of risk-adjusted mutual fund performance. Journal of Business, 69, 133–157.

Fanchon, P. (2003). Variable selection for dynamic measures efficiency in the computer industry. International advances in economic research, 9 (3), 175–188.

Ferreira, M. A., Keswani, A., Miguel, A. F. & Ramos, S. B. (2010). The flow-performance relationship around the world. Journal of Banking & Finance, 36 (6), 1759–1780.

Galagedera, D. & Silvapulle, P. (2002). Australian mutual fund performance appraisal using Data Envelopment Analysis. Managerial Finance, 28 (9), 60–73.

Gallefoss, K., Hansen, H. H., Hankaas, E. S., & Molnár, P. (2015). What daily data can tell us about mutual funds: evidence from Norway, Journal of Banking & Finance, 55, 117–129.

Glawischnig, M., & Sommersguter-Reichmann, M. (2010). Assessing the performance of alternative investments using non-parametric efficiency measurement approaches: Is it convincing? Journal of Banking and Finance, 34 (2), 295–303.

Goetzmann, W. N. & Ibbotson, R. G. (1994). Do winners repeat? Patterns in mutual fund return behaviour. Journal of Portfolio Management, 20, 9–18.

Gregoriou, G. N. & Gueyie, J. P. (2003). Risk-adjusted performance of funds of hedge funds using a modified Sharpe ratio. Journal of Alternative Investments, 6 (3), 77–83.

Gregoriou, G. N. (2006). Optimisation of the largest US mutual funds using Data Envelopment Analysis. Journal of Asset Management, 6 (6), 445–455.

Gregoriou, G. N., Sedzro, N. K., & Zhu, J. (2005). Hedge fund performance appraisal using Data Envelopment Analysis. European Journal of Operational Research, 164 (2), 555–571.

Grinblatt, M. & Titman, S. (1989). Mutual fund performance: An analysis of quarterly portfolio holdings. Journal of Business, 62, 393–416.

Grinblatt, M. & Titman, S. (1992). The persistence of mutual fund performance. The Journal of Finance, 47 (5), 1077–1984.

Grinblatt, M. & Titman, S. (1993). Performance measures without benchmarks: An examination of mutual fund returns. The Journal of Business, 66 (1), 47–68.

Grinblatt, M. & Titman, S. (1994). A study of monthly mutual funds returns and performance evaluation techniques. The Journal of Financial and Quantitative Analysis, 29 (3), 419–444.

Gruber, M. J. (1996). Another puzzle: The growth in actively managed mutual funds. The Journal of Finance, 51(3), 783–810.

Haslem, J. A. & Scheraga, C. A. (2003). Data Envelopment Analysis of Morningstar’s large-cap mutual funds. The Journal of Investing, 12 (4), 41–48.

Hendricks, D., Patel, J., & Zeckhauser, R. (1993). Hot hands in Mutual Funds: Short-Run persistence of relative performance, 1974-1988. The Journal of Finance, 48 (1), 93–130.

Huij, J. & Verbeek, M. (2007). Spillover effects of marketing in mutual fund families. ERIM Report Series.

Jain, P. C. & Wu, J. S. (2000). Truth in mutual fund advertising: Evidence of future performance and fund flows. Journal of Finance, 55, 937–958.

Jegadeesh, N. & Titman, S. (1993). Returns to buying winners and selling losers: Implications for Stock Market efficiency. The Journal of Finance, 48 (1), 65–91.

Jenkins, L. & Anderson, M. (2003). A multivariate statistical approach to reducing the number of variables in data envelopment analysis. European Journal of Operational Research, 147 (1), 51–61.

Jensen, M. C. (1968). The performance of mutual funds in the period 1945-1964, The Journal of Finance, 23 (2), 389–416.

Joro, T. & Na, P. (2006). Portfolio performance evaluation in a mean-variance-skewness framework. European Journal of Operational Research, 175, 1, 446–461.

Kerstens, K. & Van de Woestyne, I. (2011). Negative data in DEA: a simple proportional distance function approach. Journal of the Operational Research Society, 62 (7), 1413–1419.

Khan, R. N. & Rudd, A. (1995). Does historical performance predict future performance? Financial Analysts Journal, 51 (6), 43–52.

Kosowski, R., Timmermann, A., Wermers, R., & White, H. (2006). Can mutual fund ”stars” really pick stocks? New evidence from a bootstrap analysis. The Journal of Finance, 61 (6), 2551–2595.

Kuosmanen, T. & Kortelainen, M. (2007). Valuing environmental factors in cost-benefit analysis using Data Envelopment Analysis. Ecological Economics, 62 (1), 56–65.

Lin & Chen, (2008). The profitability of the weekend effect: evidence from the Taiwan mutual fund market. Journal of Marine Science and Technology, 16 (3), 222–233.

Lozano, S. & Gutiérrez, E. (2008). Data Envelopment Analysis of mutual funds based on second order stochastic dominance. European Journal of Operational Research, 189, 230-244.

Malkiel, B. G. (1995). Returns from investing in equity mutual funds 1971 to 1991, The Journal of Finance, 50 (2), 549–572.

Matallín, C., Soler, J., & Tortosa-Ausina, E. (2014). On the informativeness of persistence for evaluating mutual fund performance using partial frontiers, Omega, 42 (1), 47–64.

McMullen, P. & Strong, R. A. (1998). Selection of mutual funds using Data Envelopment Analysis. Journal of Business and Economic Studies, 4 (1), 1–14.

Morey, M. R. & Morey, R. C. (1999). Mutual fund performance appraisals: A MultiHorizon perspective with endogenous benchmarking. Omega, 27 (2), 241–258.

Murthi, B. P. S., Choi, Y. K., & Desai, P. (1997). Efficiency of mutual funds and portfolio performance Measurement: A non-parametric approach. European Journal of Operational Research, 98 (2), 408–418.

Nguyen-Thi-Thanh, H. (2006). On the use of Data Envelopment Analysis in hedge fund selection. Working Paper, Université d'Orléans.

Ribeiro Cortez, M. C., Paxson, D. A., & Da Rocha Armada, M. J (1999). Persistence in Portuguese mutual fund performance. The European Journal of Finance, 5 (4), 342–365.

Rubio, J. F., Hassan, M. K., & Merdad, H. J. (2012). Nonparametric performance measurement of internal and Islamic mutual funds. Accounting Research Journal, 25, 208–226.

Ruggiero, J. (2005). Impact Assessment of Input Omission on DEA. International Journal of Information Technology & Decision Making, 4 (3), 359–368.

Sengupta, J. (2003). Efficient test for mutual fund portfolios. Applied Financial Economics, 13, 869–876.

Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data Envelopment Analysis: Critique and extensions. New Directions for Evaluation. Special Issue: Measuring Efficiency: An Assessment of Data Envelopment Analysis, 32, 73–105.

Simar, L. & Wilson, P.W. (2001). Testing Restrictions in Nonparametric Efficiency Models. Communications in Statistics, 30 (1), 159–184.

Sharpe, W. F. (1966). Mutual fund performance, Journal of Business, 39, 119–138.

Spearman, C. (1904). The proof and measurement of association between two things. American Journal of Psychology, 15 (1), 72–101.

Tarim, A & Karan, K. (2001). Investment fund performance measurement using weight restricted data envelopment analysis: an application to the Turkish capital market. Russian & East European Finance and Trade, 37 (5), 64–84.

Thanassoulis, E., Kortelainen, M., & Allen, R. (2011). Improving envelopment in Data Envelopment Analysis under variable returns to scale. European Journal of Operational Research, 218 (1), 175–185.

Tsolas, I. (2011). Natural resources exchange traded funds: performance appraisal using DEA modeling. Journal of Centrum Cathedra. 4 (2), 250–259.

Vidal-García, J. (2013). The persistence of European mutual fund performance. Research in International Business and Finance, 28, 45–67.

Wermers, R. (1997). Momentum investment strategies of mutual funds, performance persistence and survivorship bias. Working Paper, Graduate School of Business and Administration, University of Colorado at Boulder.

Wilkens, K. & Zhu, J. (2001). Portfolio evaluation and benchmark selection: A mathematical programming approach. Journal of Alternative Investments, 4 (1), 9–19.

Wilkens, K. & Zhu, J. (2005). Classifying hedge funds using Data Envelopment Analysis, in Gregoriou, G. N., F. Rouah, and V. N. Karavas (Eds.): Hedge Funds: Strategies, Risk Assessment, and Returns. Washington: Beard Books.

Wilson, P. W. (1995). Protecting influential observations in Data Envelopment Analysis. Journal of Productivity Analysis, 4, 27–45.

Zhao, X. & Yue, W. (2012). A multi-system fuzzy DEA model with its application in mutual funds management companies, Competence evaluation. Procedia Computer Science, 1 (1), 2469–2478.

Zhao, X., Wang, S., & Lai, K. K. (2011). Mutual performance evaluation based on endogenous benchmarks. Expert systems with applications, 38, 3663–3670.

Zhu, J. (1996). Robustness of the efficient DMUs in Data Envelopment Analysis. European Journal of Operational Research, 90 (3), 451–460.

Publicado

2018-06-30

Cómo citar

Solórzano-Taborga, P., Alonso-Conde, A. B., & Rojo-Suárez, J. (2018). Efficiency and Persistence of Spanish Absolute Return Funds // Eficiencia y persistencia de los fondos de retorno absolutos españoles. Revista De Métodos Cuantitativos Para La Economía Y La Empresa, 25, Páginas 186 a 214. Recuperado a partir de https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2703

Número

Sección

Artículos