Constant volatility estimation by classical and bayesian methods in a financial market: An application to Bancolombia’s preferential prices

Authors

DOI:

https://doi.org/10.46661/rev.metodoscuant.econ.empresa.9438

Keywords:

Stochastic Differential Equation, Ito's lemma, stock returns, stochastic processes, serial autocorrelation

Abstract

In this paper we propose methods, from a classical and Bayesian approach, to estimate the constant volatility of an asset when it is not appropriate to fit heteroscedastic or stochastic volatility models relative to the sample series of the asset where no large increase in volatility is observed. To test which of the proposed methods best adapts to the variability of information and forecasts, the stochastic model proposed by Paul Samuelson is used to estimate, with minimum error, the closing prices of Bancolombia's preference shares in a sample period in which no significant jumps in the evolution of their prices are observed. From the Bayesian approach, the inverse gamma, standard Levy and Jeffreys volatility distributions are assumed a priori, with the estimation of the hyperparameters proposed by the authors. The proposed methodology is compared with classical volatility estimation and the bootstrap method. From the closing prices of Bancolombia's preference shares over a period where there is no significant increase or decrease in volatility over time, the Bayesian technique with gamma inverse prior captures the most information about sample returns, while the classical volatility estimation forecasts the asset, in and out of sample, with less error. However, forecasting the asset using either Bayesian or classical techniques does not show a significant impact.

Downloads

Download data is not yet available.

References

Álvarez Franco, P. B., Restrepo, D. A., & Pérez, F. O. (2007). Estudio de efectos asimétricos y día de la semana en el índice de volatilidad'VIX'. Revista Ingenierías Universidad de Medellín, 6(11), 126-147.

Andritzky, J. R., Bannister, G. J., & Tamirisa, N. T. (2007). The impact of macroeconomic announcements on emerging market bonds. Emerging Markets Review, 8(1), 20-37.

https://doi.org/10.1016/j.ememar.2006.05.001

Awartani, B. M., & Corradi, V. (2005). Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries. International Journal of forecasting, 21(1), 167-183.

https://doi.org/10.1016/j.ijforecast.2004.08.003

Bernardo, J. M., & Smith, A. F. (2009). Bayesian theory (Vol. 405). John Wiley & Sons.

Bhowmik, D. (2013). Stock market volatility: An evaluation. International Journal of Scientific and Research Publications, 3(10), 1-17.

Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81(3), 637-654.

https://doi.org/10.1086/260062

Bolsa de valores de Colombia, https://www.bvc.com.co/pps/tibco/portalbvc, [Online; accessed 2-August-2019] (2001).

Box, G. E., & Tiao, G. C. (2011). Bayesian inference in statistical analysis. John Wiley & Sons.

Byun, S. J., Hyun, J. S., & Sung, W. J. (2021). Estimation of stochastic volatility and option prices. Journal of Futures Markets, 41(3), 349-360.

https://doi.org/10.1002/fut.22168

Chen, Z. (1997). Empirical Performance of Alternative Option Pricing Models. Journal of Finance, 52(5), 2003-2049.

https://doi.org/10.1111/j.1540-6261.1997.tb02749.x

Chen, Z., Du, J., Li, D., & Ouyang, R. (2013). Does foreign institutional ownership increase return volatility? Evidence from China. Journal of Banking & Finance, 37(2), 660-669.

https://doi.org/10.1016/j.jbankfin.2012.10.006

Christoffersen, P., Heston, S., & Jacobs, K. (2013). Capturing Option Anomalies with a Variance-Dependent Pricing Kernel. Review of Financial Studies, 26(8), 1963-2006.

https://doi.org/10.1093/rfs/hht033

Clements, A., & Preve, D. P. (2021). A practical guide to harnessing the HAR volatility model. Journal of Banking & Finance, 133, 106285.

https://doi.org/10.1016/j.jbankfin.2021.106285

de Jesús Gutiérrez, R. (2015). Predicción de la Volatilidad de los Precios del Petróleo Mexicano: CGARCH Asimétrico con Distribuciones Normal y Laplace. Ciencias Administrativas. Teoría y Praxis, 11(1), 93-112.

Diebold, F.X., & Mariano, R., (1995). Comparing Predictive Accuracy. Journal of Business and Economic Statistics, 13, 253-265.

https://doi.org/10.1080/07350015.1995.10524599

Efron, B. (1992). Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics: Methodology and distribution (pp. 569-593). New York, NY: Springer New York.

https://doi.org/10.1007/978-1-4612-4380-9_41

Eraker, B., Johannes, M., & Polson, N. (2003). The Impact of Jumps in Volatility and Returns. Journal of Finance, 58(3), 1269-1300.

https://doi.org/10.1111/1540-6261.00566

Espinosa Acuña, O. A., & Vaca González, P. A. (2017). Ajuste de modelos GARCH Clásico y Bayesiano con innovaciones t-Student para el índice COLCAP. Revista De Economía Del Caribe, (19), 1-32.

G. Bancolombia, https://www.grupobancolombia.com/wps/portal/personas, [Online; accessed 28-June-2019] (1875).

Garcia, C. C. C., & Esquivel, A. J. C. (2018a). Propuesta de un modelo de volatilidad a los precios de cierre en las acciones CÉMEX LATAM HOLDINGS durante el periodo 15/noviembre/2012 al 27/octubre/2017. Ingeniería y Región, 19, 22-34.

https://doi.org/10.25054/22161325.1463

Garcia, C. C., & Esquivel, A. C. (2018b). Modelo de volatilidad en un mercado financiero colombiano. Comunicaciones en Estadística, 11(2), 191-218.

https://doi.org/10.15332/2422474x.3841

García, C. C., & Esquivel, Á. C. (2019). Modelo de volatilidad a los precios de cierre de la acción pfcemargos comprendidas entre 16/mayo/2013 al 31/mayo/2017. Cuadernos de Economía, 42(119), 119-138.

https://doi.org/10.32826/cude.v42i119.78

Goudarzi, H., & Ramanarayanan, C. S. (2010). Modeling and estimation of volatility in the Indian stock market. International Journal of Business and Management, 5(2), 85-98.

https://doi.org/10.5539/ijbm.v5n2p85

Harvey, D., Leybourne, S. & Newbold, P. (1997). Testing the equality of prediction mean squared errors. International Journal of Forecasting, 13(2), 281-291.

https://doi.org/10.1016/S0169-2070(96)00719-4

Hendrych, R., & Cipra, T. (2018). Self-weighted recursive estimation of GARCH models. Communications in Statistics-Simulation and Computation, 47(2), 315-328.

https://doi.org/10.1080/03610918.2015.1053924

Heston, S. L., & Nandi, S. (2000). A Closed-Form GARCH Option Valuation Model. Review of Financial Studies, 13(3), 585-625.

https://doi.org/10.1093/rfs/13.3.585

Ho, M. S., Perraudin, W. R. M., & Sørensen, B. E. (1996). A Continuous-Time Arbitrage-Pricing Model with Stochastic Volatility and Jumps. Journal of Business & Economic Statistics, 14(1), 31-43.

https://doi.org/10.1080/07350015.1996.10524627

Ho, S. W., Lee, A., & Marsden, A. (2011). Use of Bayesian estimates to determine the volatility parameter input in the black-scholes and binomial option pricing models. Journal of Risk and Financial Management, 4(1), 74-96.

https://doi.org/10.3390/jrfm4010074

Hull, J., & White, A. (1987). The Pricing of Options on Assets with Stochastic Volatilities. Journal of Finance, 42(2), 281-300.

https://doi.org/10.1111/j.1540-6261.1987.tb02568.x

Karolyi, G. A. (1993). A Bayesian approach to modeling stock return volatility for option valuation. Journal of Financial and Quantitative Analysis, 28(4), 579-594.

https://doi.org/10.2307/2331167

Khan, F., Khan, S. U. R., & Khan, H. (2016). Pricing of risk, various volatility dynamics and macroeconomic exposure of firm returns: New evidence on age effect. International Journal of Economics and Financial Issues, 6(2), 551-561.

Mamtha, D., & Srinivasan, K. S. (2016). Stock market volatility-conceptual perspective through literature survey. Mediterranean Journal of Social Sciences, 7(1), 208-212.

https://doi.org/10.5901/mjss.2016.v7n1p208

Qiu, Y., Zhang, X., Xie, T., & Zhao, S. (2019). Versatile HAR model for realized volatility: A least square model averaging perspective. Journal of Management Science and Engineering, 4(1), 55-73.

https://doi.org/10.1016/j.jmse.2019.03.003

Rossetti, N., Nagano, M. S., & Meirelles, J. L. F. (2017). A behavioral analysis of the volatility of interbank interest rates in developed and emerging countries. Journal of Economics, Finance and Administrative Science, 22(42), 99-128.

https://doi.org/10.1108/JEFAS-02-2017-0033

Tovar Cuevas, J. R. (2015). Inferencia Bayesiana e Investigación en salud: un caso de aplicación en diagnóstico clínico. Revista Médica de Risaralda, 22 (1), 9-16.

Tsay, R. S. (2014). An introduction to analysis of financial data with R. John Wiley & Sons.

Venegas-Martínez, F. (2008). Riesgos financieros y económicos, productos derivados y decisiones económicas bajo incertidumbre (Vol. 1). Escuela Superior de Economía, Instituto Politécnico Nacional.

Villagran, A., & Huerta, G. (2006). Bayesian inference on mixture-of-experts for estimation of stochastic volatility. In Econometric Analysis of Financial and Economic Time Series (Vol. 20, pp. 277-296). Emerald Group Publishing Limited.

https://doi.org/10.1016/S0731-9053(05)20030-0

Yang, J., Zhou, Y., & Wang, Z. (2009). The stock-bond correlation and macroeconomic conditions: One and a half centuries of evidence. Journal of Banking & Finance, 33(4), 670-680.

https://doi.org/10.1016/j.jbankfin.2008.11.010

Published

2025-12-18

How to Cite

Cortés García, C., & Cangrejo Esquivel, A. (2025). Constant volatility estimation by classical and bayesian methods in a financial market: An application to Bancolombia’s preferential prices . Journal of Quantitative Methods for Economics and Business Administration. https://doi.org/10.46661/rev.metodoscuant.econ.empresa.9438

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.