Constant volatility estimation by classical and bayesian methods in a financial market: An application to Bancolombia’s preferential prices
DOI:
https://doi.org/10.46661/rev.metodoscuant.econ.empresa.9438Keywords:
Stochastic Differential Equation, Ito's lemma, stock returns, stochastic processes, serial autocorrelationAbstract
In this paper we propose methods, from a classical and Bayesian approach, to estimate the constant volatility of an asset when it is not appropriate to fit heteroscedastic or stochastic volatility models relative to the sample series of the asset where no large increase in volatility is observed. To test which of the proposed methods best adapts to the variability of information and forecasts, the stochastic model proposed by Paul Samuelson is used to estimate, with minimum error, the closing prices of Bancolombia's preference shares in a sample period in which no significant jumps in the evolution of their prices are observed. From the Bayesian approach, the inverse gamma, standard Levy and Jeffreys volatility distributions are assumed a priori, with the estimation of the hyperparameters proposed by the authors. The proposed methodology is compared with classical volatility estimation and the bootstrap method. From the closing prices of Bancolombia's preference shares over a period where there is no significant increase or decrease in volatility over time, the Bayesian technique with gamma inverse prior captures the most information about sample returns, while the classical volatility estimation forecasts the asset, in and out of sample, with less error. However, forecasting the asset using either Bayesian or classical techniques does not show a significant impact.
Downloads
References
Álvarez Franco, P. B., Restrepo, D. A., & Pérez, F. O. (2007). Estudio de efectos asimétricos y día de la semana en el índice de volatilidad'VIX'. Revista Ingenierías Universidad de Medellín, 6(11), 126-147.
Andritzky, J. R., Bannister, G. J., & Tamirisa, N. T. (2007). The impact of macroeconomic announcements on emerging market bonds. Emerging Markets Review, 8(1), 20-37.
https://doi.org/10.1016/j.ememar.2006.05.001
Awartani, B. M., & Corradi, V. (2005). Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries. International Journal of forecasting, 21(1), 167-183.
https://doi.org/10.1016/j.ijforecast.2004.08.003
Bernardo, J. M., & Smith, A. F. (2009). Bayesian theory (Vol. 405). John Wiley & Sons.
Bhowmik, D. (2013). Stock market volatility: An evaluation. International Journal of Scientific and Research Publications, 3(10), 1-17.
Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81(3), 637-654.
https://doi.org/10.1086/260062
Bolsa de valores de Colombia, https://www.bvc.com.co/pps/tibco/portalbvc, [Online; accessed 2-August-2019] (2001).
Box, G. E., & Tiao, G. C. (2011). Bayesian inference in statistical analysis. John Wiley & Sons.
Byun, S. J., Hyun, J. S., & Sung, W. J. (2021). Estimation of stochastic volatility and option prices. Journal of Futures Markets, 41(3), 349-360.
https://doi.org/10.1002/fut.22168
Chen, Z. (1997). Empirical Performance of Alternative Option Pricing Models. Journal of Finance, 52(5), 2003-2049.
https://doi.org/10.1111/j.1540-6261.1997.tb02749.x
Chen, Z., Du, J., Li, D., & Ouyang, R. (2013). Does foreign institutional ownership increase return volatility? Evidence from China. Journal of Banking & Finance, 37(2), 660-669.
https://doi.org/10.1016/j.jbankfin.2012.10.006
Christoffersen, P., Heston, S., & Jacobs, K. (2013). Capturing Option Anomalies with a Variance-Dependent Pricing Kernel. Review of Financial Studies, 26(8), 1963-2006.
https://doi.org/10.1093/rfs/hht033
Clements, A., & Preve, D. P. (2021). A practical guide to harnessing the HAR volatility model. Journal of Banking & Finance, 133, 106285.
https://doi.org/10.1016/j.jbankfin.2021.106285
de Jesús Gutiérrez, R. (2015). Predicción de la Volatilidad de los Precios del Petróleo Mexicano: CGARCH Asimétrico con Distribuciones Normal y Laplace. Ciencias Administrativas. Teoría y Praxis, 11(1), 93-112.
Diebold, F.X., & Mariano, R., (1995). Comparing Predictive Accuracy. Journal of Business and Economic Statistics, 13, 253-265.
https://doi.org/10.1080/07350015.1995.10524599
Efron, B. (1992). Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics: Methodology and distribution (pp. 569-593). New York, NY: Springer New York.
https://doi.org/10.1007/978-1-4612-4380-9_41
Eraker, B., Johannes, M., & Polson, N. (2003). The Impact of Jumps in Volatility and Returns. Journal of Finance, 58(3), 1269-1300.
https://doi.org/10.1111/1540-6261.00566
Espinosa Acuña, O. A., & Vaca González, P. A. (2017). Ajuste de modelos GARCH Clásico y Bayesiano con innovaciones t-Student para el índice COLCAP. Revista De Economía Del Caribe, (19), 1-32.
G. Bancolombia, https://www.grupobancolombia.com/wps/portal/personas, [Online; accessed 28-June-2019] (1875).
Garcia, C. C. C., & Esquivel, A. J. C. (2018a). Propuesta de un modelo de volatilidad a los precios de cierre en las acciones CÉMEX LATAM HOLDINGS durante el periodo 15/noviembre/2012 al 27/octubre/2017. Ingeniería y Región, 19, 22-34.
https://doi.org/10.25054/22161325.1463
Garcia, C. C., & Esquivel, A. C. (2018b). Modelo de volatilidad en un mercado financiero colombiano. Comunicaciones en Estadística, 11(2), 191-218.
https://doi.org/10.15332/2422474x.3841
García, C. C., & Esquivel, Á. C. (2019). Modelo de volatilidad a los precios de cierre de la acción pfcemargos comprendidas entre 16/mayo/2013 al 31/mayo/2017. Cuadernos de Economía, 42(119), 119-138.
https://doi.org/10.32826/cude.v42i119.78
Goudarzi, H., & Ramanarayanan, C. S. (2010). Modeling and estimation of volatility in the Indian stock market. International Journal of Business and Management, 5(2), 85-98.
https://doi.org/10.5539/ijbm.v5n2p85
Harvey, D., Leybourne, S. & Newbold, P. (1997). Testing the equality of prediction mean squared errors. International Journal of Forecasting, 13(2), 281-291.
https://doi.org/10.1016/S0169-2070(96)00719-4
Hendrych, R., & Cipra, T. (2018). Self-weighted recursive estimation of GARCH models. Communications in Statistics-Simulation and Computation, 47(2), 315-328.
https://doi.org/10.1080/03610918.2015.1053924
Heston, S. L., & Nandi, S. (2000). A Closed-Form GARCH Option Valuation Model. Review of Financial Studies, 13(3), 585-625.
https://doi.org/10.1093/rfs/13.3.585
Ho, M. S., Perraudin, W. R. M., & Sørensen, B. E. (1996). A Continuous-Time Arbitrage-Pricing Model with Stochastic Volatility and Jumps. Journal of Business & Economic Statistics, 14(1), 31-43.
https://doi.org/10.1080/07350015.1996.10524627
Ho, S. W., Lee, A., & Marsden, A. (2011). Use of Bayesian estimates to determine the volatility parameter input in the black-scholes and binomial option pricing models. Journal of Risk and Financial Management, 4(1), 74-96.
https://doi.org/10.3390/jrfm4010074
Hull, J., & White, A. (1987). The Pricing of Options on Assets with Stochastic Volatilities. Journal of Finance, 42(2), 281-300.
https://doi.org/10.1111/j.1540-6261.1987.tb02568.x
Karolyi, G. A. (1993). A Bayesian approach to modeling stock return volatility for option valuation. Journal of Financial and Quantitative Analysis, 28(4), 579-594.
https://doi.org/10.2307/2331167
Khan, F., Khan, S. U. R., & Khan, H. (2016). Pricing of risk, various volatility dynamics and macroeconomic exposure of firm returns: New evidence on age effect. International Journal of Economics and Financial Issues, 6(2), 551-561.
Mamtha, D., & Srinivasan, K. S. (2016). Stock market volatility-conceptual perspective through literature survey. Mediterranean Journal of Social Sciences, 7(1), 208-212.
https://doi.org/10.5901/mjss.2016.v7n1p208
Qiu, Y., Zhang, X., Xie, T., & Zhao, S. (2019). Versatile HAR model for realized volatility: A least square model averaging perspective. Journal of Management Science and Engineering, 4(1), 55-73.
https://doi.org/10.1016/j.jmse.2019.03.003
Rossetti, N., Nagano, M. S., & Meirelles, J. L. F. (2017). A behavioral analysis of the volatility of interbank interest rates in developed and emerging countries. Journal of Economics, Finance and Administrative Science, 22(42), 99-128.
https://doi.org/10.1108/JEFAS-02-2017-0033
Tovar Cuevas, J. R. (2015). Inferencia Bayesiana e Investigación en salud: un caso de aplicación en diagnóstico clínico. Revista Médica de Risaralda, 22 (1), 9-16.
Tsay, R. S. (2014). An introduction to analysis of financial data with R. John Wiley & Sons.
Venegas-Martínez, F. (2008). Riesgos financieros y económicos, productos derivados y decisiones económicas bajo incertidumbre (Vol. 1). Escuela Superior de Economía, Instituto Politécnico Nacional.
Villagran, A., & Huerta, G. (2006). Bayesian inference on mixture-of-experts for estimation of stochastic volatility. In Econometric Analysis of Financial and Economic Time Series (Vol. 20, pp. 277-296). Emerald Group Publishing Limited.
https://doi.org/10.1016/S0731-9053(05)20030-0
Yang, J., Zhou, Y., & Wang, Z. (2009). The stock-bond correlation and macroeconomic conditions: One and a half centuries of evidence. Journal of Banking & Finance, 33(4), 670-680.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Christian Cortés García, Alvaro Cangrejo Esquivel

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Submission of manuscripts implies that the work described has not been published before (except in the form of an abstract or as part of thesis), that it is not under consideration for publication elsewhere and that, in case of acceptance, the authors agree to automatic transfer of the copyright to the Journal for its publication and dissemination. Authors retain the authors' right to use and share the article according to a personal or instutional use or scholarly sharing purposes; in addition, they retain patent, trademark and other intellectual property rights (including research data).
All the articles are published in the Journal under the Creative Commons license CC-BY-SA (Attribution-ShareAlike). It is allowed a commercial use of the work (always including the author attribution) and other derivative works, which must be released under the same license as the original work.
Up to Volume 21, this Journal has been licensing the articles under the Creative Commons license CC-BY-SA 3.0 ES. Starting from Volume 22, the Creative Commons license CC-BY-SA 4.0 is used.



