Investigadores del CABD descubren por qué las células rompen su núcleo cuando se dividen

25 Abr 2018

El estudio, publicado en Cell Reports, es fruto de la colaboración entre dos grupos de investigación liderados por los profesores Juan Jiménez y Rafael R. Daga

La colaboración entre el Grupo de investigación "Control de la división celular" liderado por el profesor Juan Jiménez y el Grupo de investigación "Arquitectura y dinámica nuclear" del profesor Rafael R. Daga, ambos investigadores del CABD (Centro Andaluz de Biología del Desarrollo) -centro mixto participado por la Universidad Pablo de Olavide, CSIC y Junta de Andalucía- ha permitido descubrir un mecanismo adaptativo que explica por qué las células rompen su núcleo cada vez que se dividen. Según el trabajo, que acaba de ser publicado en Cell Reports -una de las revistas más prestigiosas sobre Biología Celular-, estudiando la división en organismos más simples como la levadura de fisión, para terminar la división celular, es necesario desmontar el huso -estructura de microtúbulos especializada en separar los cromosomas- al final de la mitosis empleando factores de desensamblaje que se encuentran en el citoplasma. Por lo tanto, se trata de una razón evolutiva.

Muchas propiedades de las células humanas hay que entenderlas con una perspectiva histórica, remontándose a su origen evolutivo para entender por qué ocurren actualmente. Las primeras células eucariontes probablemente surgieron hace unos 2.200 millones de años creando una estructura interna de membrana -núcleo- que sirvió para separar su información genética -ADN en cromosomas- de los demás componentes y procesos de la célula. En esas primeras células eucariontes, simples, pequeñas y con pocos genes, cabe esperar que el núcleo se mantuviera intacto durante todo el ciclo de vida, incluyendo el tiempo en el que la información genética se duplica y se reparte para generar dos células hijas -mitosis-. Aún ahora existen organismos así, más simples, incluso durante la división. Pero por alguna razón, en las células eucariontes de organismos actuales más complejos, desde nematodos o insectos hasta nuestras propias células, la membrana nuclear se rompe cada vez que la célula se divide y se vuelve a reconstruir al final de la división, un proceso muy llamativa con un enorme coste de energía y de exposición del material genético.

Teniendo en cuenta que las levaduras mantienen siempre el núcleo cerrado, estas células tienen que transportar los factores de desensamblaje a través de la membrana nuclear en la zona media para que actúen, algo muy similar a lo que debía ocurrir en las primeras células eucariontes. Curiosamente, en una división especial -segunda división meiótica- que la levadura hace para producir sus gametos -esporas-, la célula de levadura rompe parcialmente la barrera de la membrana nuclear, algo que en la práctica es similar a lo que hacen nuestras propias células, rompiendo la membrana nuclear. Según señala Juan Jiménez, "este trabajo revela que romper la barrera nuclear en estas levaduras sirve para que los factores de desensamblaje del huso accedan antes al núcleo, sin esperar a que se transporten a través de la membrana nuclear. Este 'cortocircuito' hace que el huso se desmonte antes, permitiendo por tanto que sea mucho más corto y que los cromosomas puedan segregar en un espacio más limitado de la célula durante la segunda división meiótica".

Esta función de la rotura de la membrana nuclear en levaduras lleva a estos investigadores e investigadoras a extrapolar una posible utilidad similar para la rotura de la membrana en la evolución eucarionte: cuando las primeras células van incrementando su complejidad y su información genética, llega un momento en el que la longitud del huso mitótico no cabe en el columen limitado del núcleo. Así pues, la rotura de la membrana nuclear puede haber surgido por la necesidad de iniciar antes el desensamblaje del huso para reducir su longitud final, permitiendo que la división transcurra sin interferencias en un volumen celular limitado. El trabajo ha sido seleccionado por la revista como "destacado", acompañado por un artículo que describe la importancia del mismo.

Artículo publicado en Cell Reports: Ignacio Flor-Parra, Ana Belén Iglesias-Romero, Silvia Salas-Pino, Rafael Lucena, Juan Jiménez and Rafael R. Daga. Importin α and vNEBD control meiotic spindle disassembly in fission yeast. Cell Reports, 23:933-941. 2018. DOI: https://doi.org/10.1016/j.celrep.2018.03.073

http://www.cell.com/cell-reports/fulltext/S2211-1247(18)30434-0

Fuente: Unidad Técnica de Comunicación de la UPO



Facebook   Twitter

 NUBE DE TAGS

Accede a la oferta tecnológica de interés para tu empresa desde esta nube de tags.

Acuicultura aditivos Aeroespacial Agricultura Agua aguas residuales Alimentación alimentos funcionales almazaras análisis biomecánico antienvejecimiento antiinflamatorio antioxidantes Apoptosis Aprendizaje-Servicio ApS Aromas Arqueología Bebidas Big Data BIO-MS bioadsorción Biocarbon biocidas biodiesel Biodiversidad Bioenergética Bioinformática biomasa algal Biomedicina Biopilas Bioquímica Biotecnología bombas de destoxificación bombas destoxificación C.elegans Cáncer cardiovascular Celdas biocombustibles Celiaquía Células madre celulosa CO2 Coeducación Coenzima Q comercio electrónico competencias plurilingües y pluriculturales Compostaje compuestos bioactivos Conservación Construcción Cooperación territorial Cosmética Cultura Deporte Derecho desastres naturales Diabetes Dietética Dispositivo de salto Drosophila Edafología Educación Electricidad emergencias Emociones Empresas de Base Tecnológica Energías renovables enfermedad cardiovascular enfermedad gaucher enfermedad hígado graso no alcohólica (EHGNA) Enfermedades lisosomales Enfermedades mitocondriales Enfermedades raras Entrenamiento deportivo envejecimiento enzimas Estrés hídrico Estudios Sociales explotación FE-SEM Fenotipaje Fibromialgia Fibrosis hepática Fisiología fotobiorreactores Ganaderia Gestión franquicias Gestión información Hidrógeno Hidroponía hueso aceituna Idiomas igualdad de género Impacto Cruzado Impacto social Indicadores Infraestructuras inmovilización de enzimas inmunotolerancia Inteligencia Artificial Internet of things (IoT) Jurídicos lactosa macroalgas Maldi-Tof Maquinaria uso industrial material didáctico Materiales medicina regenerativa medioambientales Metagenoteca Métodos Alternativos microalgas microbiota intestinal microscopía Microscopio Minería de Datos Miniería de Datos modelo formativo MOFs NACH nanopartículas Nanotecnología naturales Neurociencia Neurociencias Neurogestión neuroimagen Neuromanagement Nutrición obesidad infantil ocio Optimización Parkinson Patentes patrimonio Pedagogía perfumes pesticidas plaguicidas Proteómica protocolo LoRa Química Químicas Raman reactores enzimáticos Recursos Marinos Recursos naturales Rendimiento deportivo residuos resonancia magnética riesgo tóxico Robótica Root Simulators RSC RSE Running Salud Salud Pública SCT Seguridad Sensor FBRM Series temporales Sexado Aves Simulación Simulación Molecular Síndrome MELAS smart cities Social Media socialización socioeconómicos Sociología Soft Computing spin-off Suero lácteo Tecnologías Tercer sector terremotos Tic toxicología Traducción Transporte trata laboral turismo vertidos Videojuegos Zeolitas

Contacto


Si tienes cualquier duda o consulta ponte en contacto con nosotros


Contacto

Otri 2.o


Te invitamos a conocer y participar en las diferentes herramientas basadas en la web social donde se encuentra la OTRI

Leer más ...


Contacto